3rd International Conference on Recent Trends in Computing 2015 (ICRTC-2015) d-Lucky Labeling of Graphs

Mirka Miller ${ }^{\text {a,b }}$, Indra Rajasingh ${ }^{c}$, D. Ahima Emilet ${ }^{\mathrm{c}, *}$, D. Azubha Jemilet ${ }^{\mathrm{c}}$
${ }^{a}$ School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan NSW 2308, Australia
${ }^{b}$ Department of Mathematics, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Czech Republic
${ }^{c}$ School of Advanced Sciences, VIT University, Chennai-600127, India

Abstract

Let $l: V(G) \rightarrow N$ be a labeling of the vertices of a graph G by positive integers. Define $c(u)=\sum_{v \in N(v)} l(v)+d(u)$, where $d(u)$ denotes the degree of u and $N(u)$ denotes the open neighborhood of u. In this paper we introduce a new labeling called d-lucky labeling and study the same as a vertex coloring problem. We define a labeling l as d-lucky if $\mathrm{c}(\mathrm{u}) \neq \mathrm{c}(\mathrm{v})$, for every pair of adjacent vertices u and v in G. The d-lucky number of a graph G, denoted by $\eta_{\mathrm{dl}(}(\mathrm{G})$, is the least positive k such that G has a d-lucky labeling with $\{1,2, \ldots, k\}$ as the set of labels. We obtain $\eta_{\mathrm{dl}}(\mathrm{G})=2$ for hypercube network, butterfly network, benes network, mesh network, hypertree and X-tree.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 3rd International Conference on Recent Trends in Computing 2015
(ICRTC-2015)
Keywords: Lucky labeling; d-lucky labeling; benes network; butterfly network; mesh network.

1. Introduction

Graph coloring is one of the most studied subjects in graph theory. It is an assignment of labels called colors to the elements of a graph, subject to certain constraints. Karonski, Luczak and Thomason ${ }^{2}$ initiated the study of proper labeling. The rule of using colors originates from coloring the countries of a map, where each face is colored exactly. In its simplest outline, vertex coloring or proper labeling is a way of coloring the vertices of a graph such that no two adjacent vertices share the same color. The problem of proper labeling offers numerous variants and established great significance at recent times, for example see ${ }^{1,2,6}$. Graph coloring is used in various research areas of computer science such as networking, image segmentation, clustering, image capturing and data mining.

There is a spectrum of labeling procedures that are available in the literature, leading to proper vertex coloring of graphs. For a mapping $f: V(G) \rightarrow\{1,2, \ldots, k\}$, a proper vertex coloring is obtained through Lucky labeling ${ }^{9,12}$, Vertex-labeling by product ${ }^{5}$, Vertex-labeling by gap, Vertex-labeling by degree and Vertex-labeling by maximum ${ }^{5}$. For a mapping $f: E(G) \rightarrow\{1,2, \ldots, k\}$, a proper vertex coloring is obtained through Edge-labeling by sum ${ }^{11}$, Edge labeling by product ${ }^{5}$ and Edge-labeling by gap ${ }^{5}$. In this paper we introduce a new labeling called d-lucky labeling and compute the d-lucky number of certain networks.

2. Some special classes of graphs with $\boldsymbol{\eta}_{\mathrm{dl}}(\mathbf{G})=\mathbf{2}$

We begin with the definition of d-lucky labeling. For a vertex u in a graph G, let $N(u)=\{v \in V(G) / u v \in$ $E(G)\}$ and $\mathrm{N}[\mathrm{u}]=\mathrm{N}(\mathrm{u}) \mathrm{U}\{\mathrm{u}\}$.

Definition 2.1 Let $l: V(G) \rightarrow\{1,2, \ldots, k\}$ be a labeling of the vertices of a graph G by positive integers. Define $c(u)=\sum_{v \in N(u)} \downarrow(v)+d(u)$, where $d(u)$ denotes the degree of u. We define a labeling l as d-lucky if $c(u) \neq c(v)$, for every pair of adjacent vertices u and v in G . The d-lucky number of a grap G , denoted by $\eta_{d l}(G)$, is the least positive k such that G has a d-lucky labeling with $\{1,2, \ldots, k\}$ as the set of labels.

Definition 2.2 The vertex set V of Q_{n} consists of all binary sequence of length n on the set $\{0,1\}$, that is, $V=\left\{x_{1} x_{2} \ldots x_{n} \in\{0,1\}, i=1,2, \ldots, n\right\}$. Two vertices are linked by an edge if and only if x and y differ exactly in one coordinate, that is, $\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=1$. In terms of cartesian product, Q_{n} is defined recursively as follows. $Q_{1}=K_{2}$, $Q_{n}=Q_{n-1} \times Q_{1}=K_{2} \times K_{2} \times \ldots \times K_{2}, n \geq 2$.

Theorem 2.3 The n-dimensional hypercube network Q_{n} admits d-lucky labeling and $\eta_{d l}\left(Q_{n}\right)=2$.

Fig. 1. d-lucky labeling of hypercube network, Q_{4}.

A most popular bounded - degree derivative network of the hypercubes is called a butterfly network.
Definition 2.4 [10] The n-dimensional butterfly network, denoted by $B F(n)$, has a vertex set $V=\left\{(x ; i): x \in V\left(Q_{n}\right), 0 \leq i \leq n\right\}$. Two vertices $(x ; i)$ and $(y ; j)$ are linked by an edge in $B F(n)$ if and only if $j=i+1$ and either
(i) $x=y$, or
(ii) x differs from y in precisely the $j^{\text {th }}$ bit.

For $x=y$, the edge is said to be a straight edge. Otherwise, the edge is a cross edge. For fixed i, the vertex
$(x ; i)$ is a vertex on level i.

Definition 2.5 [10] The topological structure of a mesh network is defined as the Cartesian product $P_{l} \times P_{m}$
denoted by $M(l, m)$, where P_{l} and P_{m} denotes and undirected path on l and m vertices respectively.
Remark 2.6 The mesh $M(l, m)$ has $l m$ vertices and $2(l m)-(l+m)$ edges, where $l, m \geq 2$ and l, m denotes rows and columns of $M(l, m)$ respectively.

Theorem 2.7 The n-dimensional butterfly network $\mathrm{BF}(\mathrm{n})$ admits d-lucky labeling and $\eta_{d l}(B F(n))=2$.

Fig. 2. (a) d-lucky labeling of $\operatorname{BF}(3)$; (b) d-lucky labeling of $M(5,6)$ Mesh network.
Proof. Label the vertices in consecutive levels of $B F(n)$ as 1 and 2 alternately, beginning from level 0 . We note that every edge $e=(u, v)$ in $B F(n)$ has one end at level i and the other end at level $i+1$ or level $i-1$ (if it exists), $0 \leq i \leq n$.

Case 1: Suppose u is in level 0 , then u is incident on one cross edge and one straight edge with the other ends at level 1. Since $l(u)=1$ and each member of $N(u)$ is labeled 2 , we have $\left.c(u)=\sum_{v \in N(u)}\right)^{(v)}+d(u)=6$, where $d(u)$ is the degree of u. Since $l(v)=2$ and each member of $N(v)$ is labeled 1 , we have $c(v)=\sum_{u \in N(v)} l(u)+d(v)=8$. Thus $c(u) \neq c(v)$. The same argument holds good when u is in level n.
Case 2: Suppose u is in level i, i is even, $0<i<n$ and v is in level $i+1$. Then u is incident on one cross edge and one straight edge with the other ends at level $i+1$ and also incident on one cross edge and one straight edge with the other ends at level $i-1$. Since $l(u)=2$, each member of $N(u)$ is labeled 1 . Therefore, we have $c(u)=\sum_{v \in N(u)} J(v)+d(u)=8$. Further $l(v)=1$ and each member of $N(v)$ is labeled 2. Therefore, we have $c(v)=\sum_{u \in N(v)} l(u)+d(v)=12$. Thus $c(u) \neq c(v)$. A similar argument shows that $c(u) \neq c(v)$ if v is in level $i-1$. The case when i is odd is also similar. See Figure 2(a) for d-lucky labeling of $B F(3)$ with $c(u)$ listed within paranthesis for any $u \in V$. Hence n-dimensional butterfly network admits d-lucky labeling.

Theorem 2.8 The mesh network denoted by $M(l, m)$ admits d-lucky labeling and $\eta_{\mathrm{dl}}(M(\mathrm{l}, \mathrm{m}))=2$..
Proof. Let G be a mesh $M(l, m)$, where $l, m \geq 2$. Then G admits d-lucky labeling and $\eta_{\mathrm{dl}}(\mathrm{G})=2$. Label the vertices in row i, i even, as 1 and 2 alternately, beginning with label 1 from left to right. Label all the vertices in row i, i odd, as 2 . Edges with both ends in the same row are called horizontal edges. Edges with one end in row i
and the other end in row $(i+1)$ or row $(i-1)$ are called vertical edges.
Case 1: Suppose u and v are in row 1 , where $d(u)=2$, then u has one horizontal edge and one vertical edge incident at it. If $l(u)=2$, by labeling of G the adjacent vertices on the horizontal and vertical edges incident with u are labeled as 2 and 1 respectively. We have $c(u)=\sum_{v \in N(u)} l(v)+d(u)=5$. On the other hand, if v and each member of $N(v)$ is labeled 2, we have $c(v)=\sum_{u \in N(v)} l(u)+d(v)=9$. Thus $c(u) \neq c(v)$. A similar argument holds when $l(u)=1$ or when u is in row n.

Case 2: Suppose u and v are in row i, i even, where $d(u)=3$ and $d(v)=4, u$ has two vertical edges in rows $i-1$ and $i+1$ and one horizontal edge with the other end in row i incident with it. Since $l(u)=1$, each member of $N(u)$ is labeled 2. Therefore, we have $c(u)=\sum_{v \in N(u)} l(v)+d(u)=9$. On the other hand, suppose v is in row i, then v has two vertical edges in row $i-1$ and $i+1$ and two horizontal edges with the other end in row i incident with it. Since $l(v)=2$, each member of $N(v)$ in the horizontal row is labeled 1 and $N(v)$ in vertical column is labeled 2. Therefore, we have $c(v)=\sum_{u \in N(v)} l(u)+d(v)=10$. The vertex sums are distinct. A similar argument holds when v is in row $n-1$.

Case 3: Suppose u and v are in row i, i odd, where $d(u)=3$ and $d(v)=4, u$ has two vertical edges in rows $i-1$ and $i+1$ and one horizontal edge with the other end in row i incident with it. Since $l(u)=2$, by labeling of G the adjacent vertices on the horizontal and vertical edges incident with u are labeled as 2 and 1 respectively. Therefore, we have $c(u)=\sum_{v \in N(u)} l(v)+d(u)=7$. On the other hand, suppose v is in row i, then v has two vertical edges in row $i-1$ and $i+1$ and two horizontal edges with the other end in row i incident with it. Since $l(v)=2$, each member of $N(v)$ is labeled 2. Therefore, we have $c(v)=\sum_{u \in N(v)} l(u)+d(v)=12$. The vertex sums are distinct. (For illustration, see Figure $2(b)$, d-lucky labeling of $M(5,6)$ mesh network with $c(u)$ listed within paranthesis for any $u \in V)$. Hence the mesh network admits d-lucky labeling with $\eta_{\mathrm{dl}}(G)=2$.

Definition 2.9 The n-dimensional benes network consists of back-to-back butterfly, denoted by $B B(n)$. The $B B(n)$ has $2 n+1$ levels, each with 2^{n} vertices. The first and last $n+1$ levels in the $B B(n)$ form two $B F(n)$'s respectively, while the middle level in $B B(n)$ is shared by these butterfly networks. The n-dimensional benes network has $(n+1) 2^{n+1}$ vertices and $n 2^{n+2}$ edges. It has only 2-degree vertices and 4 -degree vertices, and thus, is eulerian.

Theorem 2.10 The n-dimensional benes network $B B(n)$ admits d-lucky labeling and $\eta_{\mathrm{dl}}(B B(n))=2$.

Fig. 3. d-lucky labeling of $\mathrm{BB}(3)$.
Proof. Label the vertices in consecutive levels of $B B(n)$ as 1 and 2 alternately, beginning from level 0 . We note that every edge $e=(u, v)$ in $B B(n)$ has one end at level i and the other end at level $i+1$ or level $i-1$ (if it exists), $0 \leq$ $i \leq n$.

Case 1: Suppose u is in level 0 , then u is incident on one cross edge and one straight edge with the other ends at level 1. Since $l(u)=2$ and each member of $N(u)$ is labeled 1 , we have $c(u)=\sum_{v \in N(u)} l(v)+d(u)=4$, where $d(u)$ is the degree of u. Since $l(v)=1$ and each member of $N(v)$ is labeled 2 , we have $c(v)=\sum_{u \in N(v)} l(u)+$ $d(v)=12$. Thus $c(u) \neq c(v)$. The same argument holds good when u is in level n.

Case 2: Suppose u is in level i, i is even, $0<i<n$ and v is in level $i+1$. Then u is incident on one cross edge and one straight edge with the other ends at level $i+1$ and also incident on one cross edge and one straight edge with the other ends at level $i-1$. Since $l(u)=2$, each member of $N(u)$ is labeled 1 . Therefore, we have $c(u)=$ $\sum_{v \in N(u)} l(v)+d(u)=8$. Further $l(v)=1$ and each member of $N(v)$ is labeled 2. Therefore, we have $c(v)=$ $\sum_{u \in N(v)} l(u)+d(v)=12$. Thus $c(u) \neq c(v)$. A similar argument shows that $c(u) \neq c(v)$ if v is in level $i-1$. The case when i is odd is also similar. See Figure 3 for d-lucky labeling of $B B(3)$ with $c(u)$ listed within paranthesis for any. Hence n-dimensional benes network admits d-lucky labeling.

Definition 2.11 [13] A hypertree is an interconnection topology for incrementally expansible multicomputer systems, which combines the easy expandability of tree structures with the compactness of the hypercube; that is, it combines the best features of the binary tree and the hypercube. The basic skeleton of a hypertree is a complete binary tree T_{r}. Here the nodes of the tree are numbered as follows: The root node has label 1. The root is said to be at level 0 . Labels of left and right children are formed by appending 0 and 1 , respectively to the labels of the parent node. Here the children of the nodes x are labeled as $2 x$ and $2 x+1$. Additional links in a hypertree are horizontal and two nodes in the same level of the tree are joined if their label difference is 2^{i-2}. We denote an r-level hypertree as $H T(r)$. It has $2^{r+1}-1$ vertices and $3\left(2^{r}-1\right)$ edges.

Definition 2.12 An X-tree $X T_{n}$ is obtained from complete binary tree on $2^{n+1}-1$ vertices of length $2^{i}-1$, and adding paths P_{i} left to right through all the vertices at level $i, 1 \leq i \leq n$.

Theorem 2.13 The r-level hypertree HT_{r} admits d-lucky labeling and $\eta_{d l}(H T(r))=2$.

Fig.4. d-lucky labeling of hypertree, $H T(3)$.
Theorem 2.14 The X-tree $X T_{r}$ admits d-lucky labeling and $\eta_{d l}\left(X T_{r}\right)=2$

Fig. 5. d-lucky labeling of X-tree, $X T$ (3).

3. Conclusion

A new labeling called d-lucky labeling is defined and the graph which satisfies the d-lucky labeling is called a d-lucky graph. d-lucky labeling of some special classes of graphs like hypercube networks, butterfly networks, benes network, mesh network, hypertree and X-tree are investigated.

References

1. S. Czerwinski, J. Grytczuk, V. Zelazny, Lucky labelings of graphs, Information Processing Letters, 109(18), 1078-1081, 2009.
2. M. Karonski, T. Luczak, A. Thomason, Edge weights and vertex colours, Journal of Combinatorial Theory,Series B, 91(1), 151-157, 2004.
3. D. Marx, Graph coloring problems and their applications in scheduling, Periodica Polytechnica, Mechanical Engineering, Eng. 48(1), 11-16, 2004.
4. S.G. Shrinivas et. al, Applications of graph theory in computer science an overview, International Journal of Engineering Science and Technology. 2(9), 4610-4621, 2010.
5. A. Dehghan, M.R. Sadeghi, A. Ahadi, Algorithmic complexity of proper labeling problems, Theoretical Computer Science, 495, 25-36, 2013.
6. G. Chartrand, F. Okamoto, P. Zhang, The sigma chromatic number of a graph, Graphs and Combinatorics, 26(6), 755-773, 2010.
7. M.A. Tahraoui, E. Duchene, H. Kheddouci, Gap vertex-distinguishing edge colorings of graphs, Discrete Math. 312 (20), 3011-3025, 2012.
8. J.S.-Kaziow, Multiplicative vertex- colouring weightings of graphs, Information Processing Letters, 112(5), 191194, 2012.
9. A. Ahadi, A. Dehghan, M. Kazemi, E. Mollaahmadi, Computation of lucky number of planar graphs is NP-hard, Inform. Process. Lett. 112(4), 109-112, 2012.
10. J. Xu, Topological structure and analysis of interconnection Networks, Kluwer Academic Publishers,Boston.
11. A. Dudek and D. Wajc, On the complexity of vertex-coloring edge-weightings, Discrete Mathematics and Theoretical Computer Science, 13(3), 45-50, 2011.
12. A. Deghan, M.-R. Sadeghia, A. Ahadi, The complexity of the sigma chromatic number of cubic graphs, Discrete Appl. Math., submitted.
13. F.F. Dragan, A. Brandstadt, r-Dominating cliques in graphs with hypertree structure, Discrete Mathematics, 162, 93-108, 1996.
